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Determination of the relative and absolute stereochemistry of
complex natural products currently relies on experimental tech-
niques such as X-ray crystallography, circular dichroletMR
analysis of Mosher esters and related derivativeiemical
degradation, and total synthe$isChemical degradation or the

use of multistep total synthesis for the unambiguous assignment

of the configuration of structurally novel natural products with
multiple chiral centers is limited because it is time-consuming
and costly. An alternative method that does not require synthetic
transformations or X-ray quality crystals is clearly desirable, in
particular for flexible molecules with unusual structural features
that limit the applicability of NMR methods. In the theory of
optical activity, many empiricei;® semiempirical®** classi-
cal!>%and quantum mechanié&i?> models have been devel-
oped, but not until very recently were quantitatively reliable
guantum chemical computations of molar rotation angles re-
ported?® Recently, ab initio calculations of molar rotation angle
were performed in the zero frequency (off-resonance) approxima-
tion for small molecules with one or two chiral centéfsHerein,

we report the first ab initio theoretical approach to assign
unambiguously the configuration of a complex natural product
by calculating molar rotation angles. Within the limits of the
van't Hoff superposition principlé}® the molar rotation of a
natural product with weakly interacting multiple stereocenters can
be calculated on the basis of the molar rotations of suitable
fragments. Simple constant potential model system calculations
support the principle of superposition for weakly interacting
fragments?® Accordingly, the absolute stereochemistry of the
compound can be assigned upon comparison of appropriate sum
of calculated fragment rotation angles and the experimental molar
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rotation. Our approach divides the natural product into weakly
interacting fragments, computes the molar rotations for each
fragment, and sums them to obtain a composite value that is then
compared to the experimental value for the natural product.

The configuration of the marine natural product hennoxazole
A (1) was assigned previously on the basis of the total synthesis
of four stereoisomers and a circular dichroism /4. In this
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work, we have computed the molar rotation angles for eight
different stereoisomers of hennoxazole A by combining results
of independent electronic structure calculations on three fragments.
Ab initio methods, in combination with molecular mechanics
conformational search algorithms, were applied for the first
accurate theoretical prediction of the molar rotation of a natural
product. We show that the absolute stereochemistry of hennox-
azole A can be correctly assigned from this series of computations
and the NMR dat® that established the relative stereochemistry
of fragmentl.

Hennoxazole A was divided into three fragments-I{l ).
Fragment incorporates the stereocenters at carbons 2, 4, and 6,
and fragmentll has the stereocenter at C(8). Fragmdht
includes the stereocenter at C(22). The NMR spectrum of natural
hennoxazole A revealed the presence of eithealk or all-R
configuration for fragmenit. Accordingly, only two enantiomeric
structures of fragmenit were chosen with the R4R,6R) and
254S,69) configurations. Similarly, enantiomeric structures of

agments|l and Ill , with R and S configurations at the
stereocenters C(8) and C(22), were selected. Low-energy ge-
ometries for these six molecules were obtained by Mift2ce
field optimization using the Monte Carlo conformational search
algorithm implemented in Macromodel £5.Chloroform was
used as the “solvent” in the conformational search for all three
fragment molecules. The fragment molar rotation angles were
computed by Boltzmann weighting of angles computed for all
low-energy geometries. Additional configurations were added
until the Boltzmann-weighted sum converged (i.e., adding ad-
ditional structures changed the computed molar rotation angle
by <5%). In practice, 820 conformers were computed for each
molecular fragment. Rotation angles were computed for at least
3.0«T above the lowest energy conformer and were included in
the Boltzmann surnt
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Calculating the sum of molar rotation angles for fragmigint
was particularly challenging because of the relative flexibility of
the skipped triene chaffi. A total of 20 low energy conformations
were used to calculate the molar rotation angh]g] for this
fragment. Finally, the molar rotation angles for different con-
figurations of hennoxazole A were calculated from the corre-
sponding fragments, using

_ [alpMw o] = (3600)(¢(w = wp, rad/cm) W
° 2 conc (g/cnd)

100 °
where pp is the specific rotation at the sodium D-line frequency
in [deg(dm g/crd)].
The expressions for the optical rotational angteof eq 1,
within the quantum mechanical framework were provided by
Rosenfeld in 19288

¢ = 4nNBw?(n® + 2)/3c?

Ml

)

N is the number of molecules per unit volunmas the refractive
index of the mediumg is the speed of light anf is related to
the imaginary part of the electric dipetenagnetic dipole polar-
izability tensorG'qs,2°

B=—-0 "G+ G, +G,)3 (3)

The electric dipole-magnetic dipole polarizability tensor in a.u.
can be expressed in terms of the linear response functi§fi‘tas

G'aﬂ = _DEL(X; mﬂD:g) =
e
m f—

J W = W,

ot

In this expressiom andj denote the ground and excited states
and wj, = w; — wy is the associated excitation frequency,

andmy are the electric and magnetic dipole operators, respectively.
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Table 1. Calculated Molar Rotations for the Three Fragments in
the Specific Enantiomeric Configurations, Averaged from Four
Calculations

fragment M]b % 20 (configuration, sign)
I 162+ 11 (R4IR6R, —ve; 254S6S, +ve)

I 105+ 22 (&R, +ve; 85,—ve)
11} 146+ 17 (2R, +ve; 22S,—ve)

Table 2. Molar Rotations of Different Stereoisomers of
Hennoxazole A Calculated from Fragment Increments According to
van't Hoff's Rule*

hennoxazole configuration Mlo + 20 obsd M]p
10 (254S6S8522R) +203+ 50 +257
11 (25456585229 —89+ 50 —48
12 (254S6S,8R 229 +121+ 50 +175
13 (254S,658R,22R) +413+ 50 +459
14 (2R4R,6R,8S522R) —121+ 50 (—175yp
15 (2R4R6R8S229  —413+50 (—459p
1° (2R4R,6R,8R,225) —203+ 50 —247
16 (2R4R 6R,8R,22) +89+ 50 (+48yp

a0bserved molar rotations refer to data of natural or synthetic
isomers.” Experimental molar rotation measurements for these stere-
oisomers are not available. Numbers in parentheses are based on the
values measured for the corresponding enantionidise natural
product. Note that it can be assigned unambiguously by comparing
the observed rotation angle with the eight computed values. Note, too,
that all computed values correlate well with the observed rotation angles
for the respective stereoisomers.

possible stereoisomers of hennoxazole A are listed in Table 2.
These values were obtained by arithmetically adding the fragment
values according to the stereochemistry shown in column 2 of
Table 2. The basic validity of van't Hoff’s rule for hennoxazole
A was demonstrated earlit2> Molar rotation angles computed
for fragmentsl andll show little dependence on the geometry
within 2—3 «T of the lowest structure. Thermal averaging of

The polarizability tensor in eq 4 was calculated using the standardthe results for fragmenitl was important in order to calculate

SCF linear response theory methods from the approprigéad

m; interaction operator¥:33 In particular, this tensor was
calculated at the frequency of the incident plane-polarized light
(sodium D-line) without resorting to the Amos static field
approximatiort>3* London atomic orbitals were used to calculate
the gauge origin independei®',s tensor’® London atomic
orbitals, also referred to as gauge invariant atomic orbitals
(GIAOs), are often used in ab initio calculations to compute a
variety of molecular magnetic properties including nuclear
shieldings®® magnetizabilities! vibrational circular dichroisni

and vibrational Raman optical activity. A 6-31G Gaussian basis
set was used to compute the electric dipateagnetic dipole
polarizability tensor using the program Dalt#° Table 1 shows

the molar rotation angle. Our method is presently limited to
molecules where the chiral centers are separated by one or more
atoms!® although units with multiple strongly interacting chiral
centers can be included in a single fragment calculation. The
results in Table 2 show that these molar rotation calculations, in
concert with the NMR analysis of hennoxazole A that provides
the relative configuration at carbons 2, 4, and 6, unambiguously
predicted the absolute stereochemistry of hennoxazole A. Within
the experimental errors of both the experimentally measured and
theoretically calculated molar rotations (the later defined within
20), only the (R,4R,6R,8R,22S) stereoisomer of hennoxazole A
agrees with the observei]p. This assignment for the config-
uration of the natural product was indeed determined earlier by

the theoretically calculated molar rotations for the three fragments total synthesig* The agreement between calculated and observed

in the specific enantiomeric configurations, averaged from four
calculations. Calculated and obsers&dM]p values of all eight
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[M]p was also satisfactory for all other stereocisomers of hennox-
azole A. Accordingly, we suggest that ab initio electronic
structure theory can now be used as a powerful tool to assist in
determining the relative and absolute stereochemistry of complex
natural products. On the basis of a simple measurement of optical
rotation, the number of plausible stereoisomers can be drastically
reduced by molecular rotation calculations. We plan to probe
the generality of this approach by further applications to complex
natural products of yet undetermined stereochemistry.
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